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Abstract

This paper describes AutoClass H, a program for automatically discovering (inducing)

classes from a database, based on a Bayesian statistical technique which automatically

determines the most probable number of classes, their probabilistic descriptions, and

the probability that each object is a member of each class. AutoClass has been tested on

several large, real databases and has discovered previously unsuspected classes. There

is no doubt that these classes represent new phenomena.

1 Introduction

The standard approach in much of AI and statistical pattern recognition research is

that a classification consists of a partitioning of the data into separate subsets, and

that these subsets are the classes. In the Bayesian approach classes are described by

probability distributions over the attributes of the objects, specified by a model function

and its parameters. To define a class is to describe (not list) the objects which belong

to it. This approach appears in the statistical literature as the theory of finite mixtures

[5].

The Bayesian approach has several advantages over other methods:

• The number of classes is determined automatically.
r

Deciding when to stop forming classes is a fundamental problem in classification.

More classes can always explain the data better, so what should limit the number

of classes the program finds? Many systems rely on an ad hoc stopping criterion.

The Bayesian solution to the problem lies in the use of prior knowledge. We

believe simpler class hypotheses (e.g., those with fewer classes) to be more likely

"RIACS. This work par_iaUy supported by NASA grant NCC2-428.

tSterlingSoftware(Don Freeman isnow attheUniversityofPittsburgh)
_NASA Ames Rese&rch Center
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than complex ones, in advance of seeing any data, and the prior probability of

the hypothesis reflects this preference. The prior probability term prefers fewer

classes, the likelihood of the data prefers more, and the two effects balance at the

most probable number of classes. As a result, AutoClass finds only one class in

random data.

, Objects are not assigned to classes absolutely.

AutoClass calculates the probability of each object's membership in each class,

providing a more intuitive classification than absolute partitioning techniques. An

object described equally well by two class descriptions should not be assigned to

either class with certainty, because the evidence cannot support such an assertion.

, All attributes are potentially significant.

Classification can be based on any or all attributes simultaneously, not on just the

most important one. This represents an advantage of the Bayesian method over

human classification. In many applications, classes are distinguished not by one

or even by several attributes, but by small differences in many. Humans often

have difficulty taking more than a few attributes into account. The Bayesian

approach utilizes all attributes simultaneously, permitting uniform consideration

of all the data.

Data can be real or discrete.

Many previous methods have difficulty analyzing mixed data. Some methods

insist on real valued data [2], while others accept only discrete data [6]. There have

been attempts to reconcile the two types of data by coercing real data into discrete

form [13] or by incorporating flexible thresholds into categorical classification [11].

Coercion of heterogeneous data to a single type destroys information and is done

purely to meet the needs of the particular classification procedure. The Bayesian

approach can utilize the data exactly as they are given.

Overview of Bayesian Classification

.utoClass is based on Bayes's theorem, a formula for combining probabilities. Given

bserved data D and a hypothesis H, it states that the probability that the hypothesis

:plains the data p(H ] D), (called the posterior probability of the hypothesis given

m data) is proportional to the probability of observing the data if the hypothesis were

aown to be true p(D [ H) (the likelihood of the data) times the inherent probability

the hypothesis regardless of the data (p(H), the prior probability of the hypothesis).

_yes's theorem is commonly expressed

p(H l D) = p(H) p(D j H)
p(D) (1)
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For our purposes, the hypothesis H is the number and descriptions of the classes

from which we believe the data D to have been drawn. Given D, we must select H to

maximize the posterior p(H I D).

For a specific classification hypothesis, calculation of the likelihood of the data

involves a straightforward application of statistics. The prior probability of the hy-

pothesis is less transparent and is taken up in section 2.3. Finally, the prior probability

of the data, p(D) in the denominator above, need not be calculated directly. It can

be derived as a normalizing constant or ignored so long as we seek only the relative

probabilities of hypotheses.

2.1 .Application to Classification

In the theory of finitemixtures (the mathematical foundation of AutoClass) each datum

in a database containing I objects isassumed to be drawn from one of J classes.Each

class is described by a class distribution function, p(z_ I z_ E C_,0"S), which gives the

probability distribution of the attributes of a datum if it were known to belong to class

Cj. These class distributions are described by a class parameter vector, 0"j, which for a

single attribute normal distribution would consist of the class mean, tz_, and variance,

_.
The probability of an object being drawn from class j is called the class probability

rri. Thus, the probability of a given datum coming from a set of classes is the sum of the

probabilities that it came from each class separately, weighted by the class probabilities.

dr

p(z, l i,e,J)= _-#p(_ I_ e c_,i#). (2)
i=l

We assume that the data are drawn from an exchangeable (static)processmthat

is,the data are unordered and independent of each other given the model. Thus

the likelihoodof measuring an entire database is the product of the probabilitiesof

measuring each object.
I

p(_[ i,_,J)= Hp(z, I i,_,z) (3)
i----1

For a given value of the class parameters, we can calculate the probability that

object i belongs to class j using Bayes's theorem.

pCx,e c; Ix,,i, _,J) = _ p(z' I_, e c_,ij)
p(x, Ii, e, ¢) (4)

These classesare _fuzzy" in the sense that even with perfect knowledge of an object's

attributes,itwill be possible to determine only the probability that itisa member of

a given class.

We break the problem of identifyinga finitemixture into two parts: determining

the classificationparameters fora given number of classes,and determining the number

of classes.Rather than seeking an estimator of the classificationparameters (the class
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parameter vectors, 8", and the class probabilities, _), we seek their full posterior prob-

ability distribution. The posterior distribution is proportional to the product of the

prior distribution of the parameters p(0-, _ [ J) and the likelihood function p(:_ [ 8",_, J).

p(0, l ,J) = 1J) p( lL ,J)
p( l J) (5)

i

The pseudo-likelihood p(g I J) is simply the normalizing constant of the posterior dis-

tribution, obtained by marginalizing (integrating) out the classification parameters--in

effect, treating them as "nuisance" parameters:

p(£] J)= ff p(r,el J)P(£ I 8,_,J) dSd_. (6)

To solve the second half of the classification problem (determining the number of

classes) we calculate the posterior distribution of the number of classes J. This is

proportional to the product of the prior distribution p(J) and the pseudo-likelihood

function p(£[ J).

P(J I r.) = p(J) p(51 J) (7)
p(e)

In principle we can determine the most probable number of classes by evaluating

p(J t_) over the range of J for which our prior p(J) is significant. In practice, the

multi-dimensional integrals of equation 6 are computationally intractable, and we must

search for the maximum of the function and approximate it about that point. Details

of the AutoClass algorithm appear in section 3.

2.2 Assumptions

We cannot attempt classification without making some assumptions. Our mathematical

formulation of the problem permits us to state our assumptions precisely and to assess

their validity. The derivation above incorporates two:

1. The data are independent given the model. That is, the data are unordered. This

is a fundamental assumption intrinsic to all classification systems.

2. The model functions0class distributions of page 30are appropriate descriptors

of the classes. The model functions themselves may incorporate additional as-

sumptions, such as independence of attribute values (as AutoClass currently

does).

2.3 Prior Probabilities

The prior probability term p(0", _ I J) in equation 5 constitutes the fundamental dif-

ference between Bayesian and classical statistics and still fuels debate. We will not

attempt to defend the use of priors herein but refer the skeptical reader to Jaynes [8]

for a full explanation of the Bayesian approach.
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Introduction of the prior probabilitysolves two problems. First,itpermits math-

ematical determination of the number of classesby introducing a preference for fewer

classes. We believe a priori that complex hypotheses are lesslikelythan simple ones,

those with fewer classes,for example, and any reasonable prior implants thisbeliefin

the equations. A more complex hypothesis will incur a penalty in the prior and will

be disfavored unless it explains the data significantlybetter. Second, the likelihood

contains singularitiesthat would complicate analysis ifitwere used alone. The prior

tames the likelihood by damping out the singularities,and the resulting posterior is

much better behaved.

However, the prior probability distributionis not completely arbitrary. There are

two basic approaches to prior distributions.A prior may be sought which captures

some prior knowledge which is available, or an uninformative prior distribution may

be sought. Uninformative priors which axe invariant to changes of scale or origin are

available, but the AutoClass 1I program does not as yet use these priors. Rather,

AutoClass uses a weak informative prior. The actual values used do not appreciably

affect the classifications found by AutoClass. The actual priors used are discussed in
Section 3.2

3 The AutoClass II Program

Section 2 described the theory behind the Bayesian approach to classification. We now

outline its implementation, AutoClass II.

3.1 The AutoClass II Class Model

In AutoClass I.I,we assume the data axe in an attribute-vaiuevector form. That is,the

database contains I objects z_,each describedby K attributevalues xi_, k E _1... K}.

Attributes may be eitherrealor discretevariables.In AutoClass ITwe currently make

the further strong assumption that the attributesare independent in each class.This

permits an extremely simple form forthe classdisu'ibutionsused in equation 2.

/¢

pCx,Ix, ci,g,) = II p(x, ci, (s)
t=l

where _-, isthe parameter vector describingthe k_ attribute in the jth class C#. We

plan to extend AutoClass to model covaxiance of _e attributes within a class in the

near future.

AutoClass models real valued attributes with _ Gaussian normal distribution, pa-

rameterized by a mean and a standard deviation, _d thus O'jk takes the form



i

AutoClass: A Bayesian Classification System 59

The class distribution is thus

For discrete attributes the class distribution is specified by the probability pjtz of

getting each possible value 1. The elements of e'#_ are the probabilities themselves. "If

there are Z possible values, labeled I to L, then the class distribution is

(1o)

3.2 Informative Priors

Although uninformative priors can be derived for use in Bayesian classification, Au-

toClass II currently uses informative priors. This is due mostly to the history of the

program, and the fact that we have obtained excellent results using these priors. The

prior information we use has only a small effect on the classification estimates.

AutoClass II employs conjugate priors, that is, prior information in the same form

as the data. In effect, the prior information for attribute k in class j consists of a set of

w' fictitious data points, described by the same summary statistics as are used for the

actual data. The larger the value of w', the stronger the influence of the prior relative

to the data. AutoClass II currently treats all classes symmetrically, using the same

conjugate points for every class and for each attribute of the same type.

3.3 Search Algorithm

As mentioned in section 2, AutoClass breaks the classificationproblem into two parts:

determining the number of classes and determining the parameters defining them.

Equation 7 gives the probability distributionover the number of classes.For each pos-

siblenumber of classesthe multi-dimensional integralof equation 6 must be performed.

Rather than attempt the integration the posteriordistributionof the classificationpa-

rameters directly,AutoClass performs a search over _ and Iri to find the maximum

of the posterior distribution (equation 5), and then approximates the integralaround

that point:

The complete problem involves starting with more classes than are beleieved to

be present (as specifiedby the user), searching to find the best class parameters for

that number of classes,approximating the integralto find the relativeprobability of

that number of classes,and then decreasing the number of classes and repeating the

procedure.

AutoClass uses a Bayesian variant ofDempster and Laird'sEM algorithm [1]to find

the best class parameters for a given number of classes(the maximum of equation 5).

To derive the algorithm, we differentiatethe posteriordistributionwith respect to the

classparameters and equate with zero. This yields a system of nonlinear equations
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which hold at the maximum of the posterior:

Wj + w'-1 (11)
_'J = I + J(w'- 1)

0 _ 3

ae--7Ir,p(_i)+ _ ,_,j_-_tnp(x,I_i) = 0, 02)
i=l

where wq is the probability that the datum x_ was drawn from class j (previously given

in equation 4), and Wj is the total weight in class 2":

w,i = p(x,e c;Ix,,_,_)
I

wi = _:w,;.
i=l

To find a solution to this system 0f equations, we iterate between equations 11 and

12 (treating _ as a constant ) and equation 4 (treating • and 0" as constants).

On any given iteration, the membership probabilities are constant, so equation 12

can be simplified by bringing wq through the derivative, giving

0[,' ]0o--7(e_)II p(=,IG=, e c,)',, = o. (13)
4=1

Thus far, our discussion of the search algorithm has related to a general class model

with an arbitrary 8i_- We now apply equation 13 to the specific AutoClass II model of

equations 8 through 10. For discrete attributes, the values of the updated parameters

0i_ derived from the class probabilities wq and prior weight w' are

Eit wq6(l, xo,) + w' - 1 6(1, x_j,) - { 1, xik = l (14)_j,,t
Wj + L(w' " 1) _ 0, otherwise

This is simply the weighted proportion of objects in class j for which attribute k had

value I.

For real valued attributes, the equations for the updated _%ikand _j, are a function

of the prior information and the empirical mean, Zjk, and variance, s_, of the kth

attribute in class j, weighted by wlj:

!

2ik = Wi

Wi z_k.

The update formulas are then:

I--Iu, z_ + Wj_jk
_jk =

w'+Wj

., _'(4)' + w_,h +
aJk = w' + Wj + l

w'Wi
(w,+ w_)(_,+ w; + 1)

(._-%,)'.

(is)

(16)
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The computational cost of a single iterationis of order I- J -K. Typically the

procedure converges in about twenty iterations,depending upon the strength of the

actual classes.A search in data having many weak classestakes longer than one having

few strong classes. The search may be speeded up by over-relaxation techniques. Of

course, the procedure may converge to localmaxima depending on the staxting point

chosen for the iteration,so we employ heuristic methods to jump away from local

maxima. Even so, many searches may be necessary to establishthe global maximu_n.

3.4 Determining the Number of Classes

We previously outlined the theory for the determination of the number of classes

present, but integration over the full paxameter space is clearly infeasible. AutoClass II

uses a crude but very effective approximation based solely on the results of the iteration

algorithm. If a class has negligible posterior probability _rj, then including that class in

the model cannot improve the likelihood of the data at all. At the same time, the prior

probability of one class probability being near zero is very low. Thus models in which a

class has negligible probability will always be less probable than models which simply

omit that class. The user runs AutoClass with J larger than the expected number of

classes. If all resulting classes have significaxit probability then the user increases J

until some classes axe empty. AutoClass then ignores the empty classes, and the pop-

ulated classes represent an optimal classification of the data given the assumed class
model function.

The utility of this approach has been experimentally confirmed on a number of

prepared data bases. SpecificaJly, when AutoClass runs with J greater than the actual

number of classes present, the iteration converges with negligible probability for the

extra classes. This behavior differs qualitatively from the behavior of maximum like-

lihood methods, which will continue to partition the classes until eventually there is
only one object in each class.

4 Extensions to the Model

4.1 Hierarchical Classification

After a database has been ax_alyzed, many classes frequently have many attributes in

common. For instance, in a database of mammals, the "dog" class and the _cat" class

will be described by the same values for many attributes (fur, four legs, etc.). In this

case, a description of all the attributes of all the classes separately is not as useful

as & ]_ierarchical classification scheme which identifies the common attributes and the

distinguishing attributes between classes.

The Bayesian method can accomodate hierarchical classification by considering a

model in which some attributes axe common to a group of sub-classes. This amounts

to a significance test of the equality of two attribute's pax_eter vectors in the non-

hierarchical classification. If there is no significant difference between some attributes
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of a group of classes, then these attributes may be estimated jointly.

4.2 Supervised Classification

Although AutoClass was designed for automatic unsupervised classification, the prior

information in equation 5 permits super:¢ised classification as well. If the user wishes

to assert that certain objects are in certain classes, a prior probability can be used

which favors class descriptions reflecting this. See Duda and Hart [4] for a discussion

of supervised Bayesian inference.

4.3 Missing Data

Consistent probability calculations require that 'unknown' be treated as a valid data

value. This is not merely a computational convenience. Failure to determine a value

is just as valid an observation as any other, and must be allowed for in any predictive

model. There may be physical reasons that a value is unknown, and discarding that

fact (by interpolating a value or, even worse, discarding the object completely) destroys

potentially valuable information.

A straightforward extension of the class model allows AutoClass to accept objects

with unknown values. For discrete attributes it can be shown that the correct procedure

for treating an unknown value is equivalent to adding an 'unknown' category to the

value set. For real-valued attributes we condition our Gaussian normal model with

discrete 'unknown' and 'known' categories:

Ojk = [Pyk,_lk,ajk] (17)

' -½\ ajk / , x,t known (18)

1 - Pjk, Zik u21known

The mean and variance axe updated as before, but the proportion of data for which xk

is known is also updated just like any other discrete variable.

5 Results

AutoClass has classified data supplied by researchers active in various domains and has

yielded some new and intriguing results:

• Iris Database Flsher's data on three species of iris [7] are a classic test for classi-

fication systems. AutoClass discovers the three classes present in the data with

very high confidence, despite the fact that not all of the cases can be assigned

to their classes with certainty. Wolfe's NORMIX and NORMAP [12] both incor-

rectly found four classes, and Dubes's MH index [3] offers only weak evidence for
three clusters.
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* Soybean Disease Database AutoClass found the four known classes in Stepp's

soybean disease data, providing a comparison with Michalski's CLUSTER/2 sys-

tem [10I. AutoClass's class assignments exactly matched Michalski's----eachob-

jectbelonged overwhelmingly to one class,indicatingexceptionally well separated

classesfor so small a database (47 cases,35 attributes).

• Horse Colic Database AutoClass analyzed the resultsof 50 veterinary tests on

259 horses and extracted classeswhich provided reliabledisease diagnoses, desl_ite

the factthat almost 40% of the data were missing.

• Infrared Astronomy Database The Infrared Astronomical Satellitetabulation

of stellarspectra is not only the largest database Autoclass has assayed (5,425

cases, 94 attributes) but the least thoroughly understood by domain experts.

AutoClass discovered classeswhich differedsignificantlyfrom NASA's previous

analysis but clearlyreflectphysical phenomena in the data.

Note that AutoClass knows nothing about spectra--the current model treats the

intensityat each wavelength as an independent quantity. As a resultAutoClass

would fi_udexactly the same classesifthe order ofthe wavelengths were scrambled.

The AutoClass infrared source classificationisthe basis of a new star catalog to

appear shortly.

We are actively collectingand analyzing other databases which seem appropriate

for classification,including an AIDS database and a second infrared spectral database.

6 Conclusion

This paper has described the Bayesian approach to the problem of classificationand

AutoClass, a simple implementation of it. Bayesian probability theory provides a

simple and extensible approach to problems such as classificationand general mixture

separation. Its theoreticalbasis isfree of ad hoc quantities,and in particular free of

any measures which alter the data to suit the needs of the program. As a result,the

elementary classificationmodel we have described lends itselfeasilyto extensions.
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